Matsuo, A., Kamio, K., Uohama, K., Yoshma, K., Connolly, J. D. \& SiM, G. A. (1988). Phytochemistry, 27, 1153-1159.

Matsuo, A., Uohama, K., Yoshida, K., Nakayama, M., Hayash, S., Connolly, J. D. \& Sim, G. A. (1985). Chem. Lett. pp. 935-938.
Neupert-Laves, K. \& Dobler, M. (1982). Helv. Chim. Acta, 65, 1426-1431.
Robins, D. J. (1982). Fortschr. Chem. Org. Naturst. 41, 115-203.
Robins, D. J. \& Sim, G. A. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1379-1382.
Russell, M. A. (1981). PhD thesis, Univ. of Glasgow, Scotland.
Russell, M. A., Sim, G. A. \& Haufe, G. (1989). Acta Cryst. B45, 416-422.

Saunders, M. (1987). J. Am. Chem. Soc. 109, 3150-3152.
Sim, G. A. (1987). Acta Cryst. C43, 778-780.
Stoeckli-Evans, H. (1979). Acta Cryst. B35, 231-234.
Stoeckli-Evans, H. (1982). Acta Cryst. B38, 1614-1617.
Stoeckli-Evans, H. \& Robins, D. J. (1983). Helv. Chim. Acta, 66, 1376-1380.
Sussman, J. L. \& Wodak, S. J. (1973). Acta Cryst. B29, 29182926.

TAMM, Ch. (1980). The Biosynthesis of Mycotoxins: a Study in Secondary Metabolism, edited by P. S. STEYN, pp. 269-299. New York: Academic Press.
Tsukuda, Y. \& Koyama, H. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 739-744.

Acta Cryst. (1990). C46, 2152-2154

Structure of 4,4',6,6'-Tetrakis(methylthio)-2,2'-bithieno[3,4-d][1,3]dithiolylidene

By Fuitio Iwasaki* and Hideyo Mikami
Department of Applied Physics and Chemistry, The University of Electro-Communications, Chofu-shi, Tokyo 182, Japan
and Kein Kobayashi
Department of Chemistry, College of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153, Japan

(Received 23 May 1989; accepted 25 January 1990)

Abstract

C}_{14} \mathrm{H}_{12} \mathrm{~S}_{10}, M_{r}=500 \cdot 91\), triclinic, $P \overline{1}, a=$ 7.050 (2),$\quad b=8.229$ (2), $\quad c=9.540$ (2) $\AA, \quad \alpha=$ 112.08 (2) $, \quad \beta=78.87(2), \quad \gamma=100.97(2)^{\circ}, \quad V=$ 499.0 (2) $\AA^{3}, Z=1, D_{x}=1.667 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ (Mo $K \alpha)$ $=0.71069 \AA, \mu=1.059 \mathrm{~mm}^{-1}, \quad F(000)=256, T=$ $293 \mathrm{~K}, R=0.038$ for 1984 observed reflections. The conformation of the molecular frame is that of a very shallow chair with the 1,3 -dithiole rings of envelope type. One of the exocyclic methylthio groups is perpendicular to the frame while the other is approximately coplanar to the molecular plane. The molecules form a sheet-like network nearly parallel to the ($\overline{1} 20$) plane where the molecules are connected with van der Waals $S \cdots S$ contacts of 3.642 (2) and 3.753 (2) \AA. The intersheet interaction is also van der Waals type and unfavorable to the intermolecular charge-transfer interaction.

Introduction. Recently many efforts have been made to obtain new types of organic donors and acceptors. The title compound, (I), a thiophene-fused tetrathiafulvalene (TTF) modified by methylthio groups, has been prepared to introduce interstack interactions (Kobayashi, 1985). Unfortunately, the molecule does not show a strong electron-donating character. The crystal structure analysis was carried out to investi-

[^0]0108-2701/90/112152-03\$03.00
gate relations between structure and donating character.

(I)

Experimental. Yellow needles, $0.70 \times 0.35 \times$ 0.35 mm , unit-cell parameters by least squares from 25 reflections ($30<2 \theta<47^{\circ}$), Rigaku AFC-4 diffractometer with graphite monochromator, $2 \leq 2 \theta \leq$ $55^{\circ}, h=-9 \rightarrow 9, k=0 \rightarrow 10, \quad l=-12 \rightarrow 12, \omega-2 \theta$ scan, scan range $(1.4+0 \cdot 4 \tan \theta)^{\circ}$, scan speed $4^{\circ} \mathrm{min}^{-1}$ in 2θ, three reflections ($13 \overline{2}, 211, \overline{2} 40$) monitored every 50 reflections, variations within 3%. 2591 reflections measured, 2422 unique, $R_{\text {int }}=0.02,1984$ observed, $\left|F_{o}\right| \geq 3 \sigma(F)$. No absorption corrections were applied. Structure solved by MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978). H atoms were found from the difference map. Block-diagonal least-squares refinement with anisotropic temperature factors for non- H atoms and isotropic ones for H . $\sum w\left(\left|F_{c}\right|-k^{-1}\left|F_{o}\right|\right)^{2}$ was minimized. $w=1$ for all reflections. $\Delta \rho_{\text {max }}=0.3 \mathrm{e}^{-3}, \Delta / \sigma_{\text {max }}=0.08$ for © 1990 International Union of Crystallography

Table 1. Positional parameters $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors $\left(\AA^{2}\right)$ for non -H atoms

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	\boldsymbol{x}	y	z	$B_{\text {eq }}$
S(2)	2024 (1)	1206 (1)	-1503 (1)	3.15 (2)
S(5)	7535 (1)	3652 (1)	24 (1)	3.40 (3)
S(8)	1969 (1)	1468 (1)	1719 (1)	$3 \cdot 68$ (3)
S(9)	6452 (1)	3022 (1)	-3108 (1)	$3 \cdot 58$ (3)
S(11)	6319 (2)	3342 (1)	3208 (1)	$4 \cdot 26$ (3)
C(1)	832 (4)	559 (4)	44 (4)	$2 \cdot 68$ (9)
C(3)	4176 (4)	2134 (4)	-699 (3)	2.48 (9)
C(4)	5899 (5)	2826 (4)	-1314 (4)	2.86 (10)
C(6)	5854 (5)	3069 (4)	1403 (4)	2.99 (10)
C(7)	4144 (4)	2263 (4)	826 (3)	$2 \cdot 62$ (9)
C(10)	7656 (8)	1098 (7)	-4207 (5)	$5 \cdot 28$ (16)
C(12)	8028 (7)	5290 (7)	3666 (5)	$5 \cdot 59$ (17)

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{S}(2)-\mathrm{C}(1)$	1.764 (4)	$\mathrm{S}(9)-\mathrm{C}(10)$	1.801 (6)
$\mathrm{S}(2)-\mathrm{C}(3)$	1.744 (3)	S(11)-C(6)	1.738 (4)
$\mathrm{S}(5)-\mathrm{C}(4)$	1.743 (4)	$\mathrm{S}(11)-\mathrm{C}(12)$	1.775 (6)
$\mathrm{S}(5)-\mathrm{C}(6)$	1.738 (4)	$\mathrm{C}(1)-\mathrm{C}\left(1^{1}\right)$	1.341 (7)
$\mathrm{S}(8)-\mathrm{C}(1)$	1.766 (4)	$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 362$ (5)
$\mathrm{S}(8)-\mathrm{C}(7)$	1.743 (4)	$\mathrm{C}(3)-\mathrm{C}(7)$	1.414 (5)
$\mathrm{S}(9)-\mathrm{C}(4)$	1.741 (4)	$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 369$ (5)
$\mathrm{C}(1)-\mathrm{S}(2)-\mathrm{C}(3)$	94.4 (2)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(7)$	114.1 (3)
$\mathrm{C}(4)-\mathrm{S}(5)-\mathrm{C}(6)$	$92 \cdot 6$ (2)	$\mathbf{S}(5)-\mathrm{C}(4)-\mathrm{S}(9)$	$122 \cdot 6$ (2)
$\mathrm{C}(1)-\mathrm{S}(8)-\mathrm{C}(7)$	94.2 (2)	$\mathrm{S}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	109.8 (3)
$\mathrm{C}(4)-\mathrm{S}(9)-\mathrm{C}(10)$	101.9 (2)	$\mathbf{S}(9)-\mathrm{C}(4)-\mathrm{C}(3)$	127.6 (3)
$\mathrm{C}(6)-\mathrm{S}(11)-\mathrm{C}(12)$	$103 \cdot 3$ (2)	$\mathrm{S}(5)-\mathrm{C}(6)-\mathrm{S}(11)$	125.1 (2)
$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{S}(8)$	115.9 (2)	$\mathrm{S}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	109.9 (3)
$\left.\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{C}(1)^{\prime}\right)$	$122 \cdot 1$ (3)	$\mathrm{S}(11)-\mathrm{C}(6)-\mathrm{C}(7)$	124.8 (3)
$\mathrm{S}(8)-\mathrm{C}(1)-\mathrm{C}\left(1^{1}\right)$	122.0 (3)	$\mathbf{S}(8)-\mathbf{C}(7)-\mathrm{C}(3)$	117.1 (3)
$\mathrm{S}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	129.1 (3)	$\mathbf{S}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	129.3 (3)
$\mathrm{S}(2)-\mathrm{C}(3)-\mathrm{C}(7)$	116.8 (2)	$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	113.6 (3)

Symmetry code: (i) $-x,-y,-z$.
non-H, 0.17 for H atoms. $R=0.038, w R=0.038, S$ $=0.646$. Atomic scattering factors from International Tables for X-ray Crystallography (1974). All computations were performed on a HITAC M260D computer of the Data Processing Center of the University of Electro-Communications with the programs UNICSIII (Sakurai \& Kobayashi, 1979), MULTAN78 (Main et al., 1978) and ORTEPII (Johnson, 1976). The final atomic parameters are given in Table 1.*

Discussion. The molecular structure with the atomic numbering is shown in Fig. 1. Bond distances and angles are listed in Table 2. The molecule has a crystallographic center of inversion and the molecular frame has a very shallow chair form. The plane (I) defined by the central six atoms, $\mathrm{C}(1), \mathrm{C}\left(1^{i}\right), \mathrm{S}(2)$, $\mathbf{S}\left(2^{i}\right), \mathbf{S}(8)$, and $\left.\mathbf{S}\left(8^{i}\right)[(\mathrm{i})=-x,-y,-z)\right]$, is planar

[^1]within 0.001 (3) \AA. The 1,3 -dithiole ring is in an envelope conformation. The dihedral angle between plane (I) and plane (II) defined by the four atoms $S(2), C(3), C(7)$ and $S(8)$ is $14 \cdot 2(1)^{\circ}$. The dihedral angle between plane (II) and the terminal thiophene ring (III) is $1.9(1)^{\circ}$. The conformations of the two independent exocyclic methylthio groups are quite different; the $\mathrm{S}(9)-\mathrm{C}(10)$ bond is almost perpendicular to the molecular frame while $\mathrm{S}(11)-\mathrm{C}(12)$ is

Fig. 1. The molecular structure with atomic numbering. The thermal ellipsoids for non-H atoms are drawn at 50% probability.

(a)

(b)

Fig. 2. (a) The projection of the crystal structure viewed along the c axis. (b) Sheet-like network of the molecules parallel to the (120) plane. Distances are given in \AA.
approximately coplanar to the molecular plane. The torsion angles $\mathrm{S}(5)-\mathrm{C}(4)-\mathrm{S}(9)-\mathrm{C}(10)$ and $\mathrm{S}(5)-\mathrm{C}(6)-\mathrm{S}(11)-\mathrm{C}(12)$ are 86.6 (2) and 32.7 (3) ${ }^{\circ}$, respectively.

The distances of the $S(2)-C(1)$ and $S(8)-C(1)$ bonds (1.764 and $1.766 \AA$, respectively) are slightly longer than those of the other endocyclic $\mathrm{S}-\mathrm{C}$ bonds ($1.738-1.744 \AA$). The $\mathrm{C}(3)-\mathrm{C}(7)$ distance is longer than that of the terminal $\mathrm{C}=\mathrm{C}$ bond of TTF and the central $C=C$ distance $[1.341$ (7) \AA] is slightly shorter than that of the neutral TTF molecule ($1.349 \AA$) (Cooper, Kenny, Edmonds, Nagel, Wudl \& Coppens, 1971). This dimension of the TTF moiety of this compound is very close to that of dibenzotetrathiafulvalene (Emge, Wiygul, Chappell, Bloch, Ferraris, Cowan \& Kistenmacher, 1982) which corresponds to a neutral TTF from the comparison of the structures of TTF in various electronic states (Kistenmacher, Phillips \& Cowan, 1974; Yakushi, Nishimura, Sugano, Kuroda \& Ikemoto, 1980). The exocyclic $\mathrm{S}-\mathrm{C}$ bonds, $\mathrm{S}(9)-\mathrm{C}(10)$ and $\mathrm{S}(11)-\mathrm{C}(12)$, are longer than the other $\mathrm{S}-\mathrm{C}$ bonds, $\mathbf{S}(9)-\mathbf{C}(4)$ and $\mathbf{S}(11)-\mathbf{C}(6)$. The difference of these lengths corresponds to that between $S-\mathrm{C}_{s p^{3}}$ and $\mathrm{S}-\mathrm{C}_{s p^{2}}$.

Fig. 2(a) shows the crystal structure viewed along the c axis. The molecules form a sheet-like network nearly parallel to the ($\overline{1} 20$) plane as shown in Fig. $2(b)$. The molecules in a sheet are connected with van der Waals $\mathrm{S} \cdots \mathrm{S}$ contacts such as $\mathrm{S}(11) \cdots \mathbf{S}\left(\mathrm{g}^{\text {ii }}\right)[(\mathrm{ii})=$ $x, y, z+1,3 \cdot 642(2) \AA]$ and $\mathrm{S}(5) \cdots \mathrm{S}\left(5^{\mathrm{iii}^{\prime}}\right)[(\mathrm{iii})=2-x$,
$1-y,-z, 3.753(2) \AA]$ and there are cavities between molecules along the c axis which are filled with methylthio groups of the adjacent sheet. The interplanar separation between the thiophene plane (III) of the molecule (x, y, z) and plane (I) of the molecule $(x+1, y, z)$ is $3 \cdot 556(8) \AA$.

This work was supported in part by a Grant-inAid for Scientific Research from the Ministry of Education, Science and Culture.

References

Cooper, W. F., Kenny, N. C., Edmonds, J. W., Nagel, A., Wudl, F. \& Coppens, P. (1971). Chem. Commun. pp. 889-890.
Emge, T. J., Wiygul, F. M., Chappell, J. S., Bloch, A. N., Ferraris, J. P., Cowan, D. O. \& Kistenmacher, T. J. (1982). Mol. Cryst. Liq. Cryst. 87, 137-161.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kistenmacher, T. J., Phllips, T. E. \& Cowan, D. O. (1974). Acta Cryst. B30, 763-768.
Kobayashi, K. (1985). Chem. Lett. pp. 1423-1424.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England and Louvain, Belgium.
Sakurai, T. \& Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-74.
Yakush, K., Nishimura, S., Sugano, T., Kuroda, H. \& Iкемото, I. (1980). Acta Cryst. B36, 358-363.

Acta Cryst. (1990). C46, 2154-2157

Structures of 2,6-Bis(methylthiomethyl)phenyl Phenyl Sulfoxide and 9,18-Epithio-2,11-dithia[3.3]metacyclophane-Trichloromethane (1/1)

By Fuilio Iwasaki,* Nobuhiko Toyoda and Norimasa Yamazaki
Department of Applied Physics and Chemistry, The University of Electro-Communications, Chofu-shi, Tokyo 182, Japan
and Hisashi Fuithara and Naomichi Furukawa
Department of Chemistry, The University of Tsukuba, Tsukuba-shi, Ibaraki 305-01, Japan

(Received 28 December 1989; accepted 25 January 1990)

0108-2701/90/112154-04\$03.00

[^2] © 1990 International Union of Crystallography

[^0]: * To whom all correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52991 (14 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: $0.443 \mathrm{~mm}^{-1}, F(000)=680, T=293 \mathrm{~K}, R=0.044$ for 2873 observed reflections. (II) 7,15,18-Trithiatetracyclo[7.7.3.0 $\left.{ }^{5,17} 0^{13,19}\right]$ nonadeca-1 (17),2,4,9,11,13(19)-hexaene-trichloromethane (1/1), $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~S}_{3} . \mathrm{CHCl}_{3}$, $M_{r}=421.86$, monoclinic, $P 2_{1} / m, a=8.749$ (1), $b=$ 12.007 (2), $\quad c=8.686$ (1) $\AA, \quad \beta=92.46(1)^{\circ}, \quad V=$

